

COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

Attur Main Road, Ramalingapuram, Salem - 106. (Recognized under section 2(f) & 12(B) of UGC Act 1956 and Accredited by NAAC with 'A' Grade) (Co - Educational Institution | Affiliated to Periyar University, Salem ISO 9001 : 2015 Certified Institution) principal@avscollege.ac.in | www.avscollege.ac.in Ph : 98426 29322, 94427 00205.

Syllabus for

B. Sc PHYSICS

CHOICE BASED CREDIT SYSTEM -

LEARNING OUTCOMES BASED CURRICULUM FRAMEWORK

(CBCS – LOCF)

(Applicable to the Candidates admitted from 2023-24 onwards)

VISION

• To attain excellence in the field of education by creating competent scholars with a touch of human values.

MISSION

- To accomplish eminence in the academic domain.
- To provide updated infrastructure.
- To educate value based education.
- To impart skills through efficient training programs.
- To cultivate culture and tradition with discipline and determination.

REGULATIONS

1. Eligibility for Admission:

Candidates seeking admission to the first year of the Bachelor of Science – Physics shall be required to have passed the Higher Secondary examination with Mathematics, Physics and Chemistry conducted by the Government of Tamil Nadu or an Examination accepted as equivalent thereto by the Syndicate subject to the conditions as may be prescribed there to are permitted to and qualify for B.Sc., (Physics) degree examinations of this University after a course of study of three academic years.

2. Duration:

The course for the degree of Bachelor of Science shall consist of three years divided into six semesters within ternal assessment under a choice-based credit system.

3. Eligibility for award of degree:

The scheme of examination of the different semester shall be as follows;

Total Marks: 4700 Part I: 400 Part II: 400 Part III: 2800 Part IV: 1000 Part V: 100 Total Credits: 140 Part I: 12 Part II: 12 Part II: 89 Part IV: 26 Part V: 1

4. Course of Study: B.Sc., Physics

The course of study shall comprise instruction in the following subjects according to the syllabus and books prescribed from time to time.

5. Scheme of Examination:

Semester Based (choice-based credit system CBCE)

6. Passing Rules: 40 % in Continues Internal Assessment and 40% in End Semester

Examinations

i) Theory

40 % of Internal Assessment (10/25)

40% of External Assessment(30/75)

ii) Practical

40 % of Internal Assessment (10/25) /(16/40)

40% of External Assessment(30/75)/(24/60)

Program	mme Outcomes (POs)
On succ	essful completion of the B. Sc Physics
	Disciplinary knowledge: Capable of demonstrating comprehensive knowledge and
PO1	understanding of one or more disciplines that form a part of an undergraduate Programme
	of study
	Communication Skills: Ability to express thoughts and ideas effectively in writing and
	orally; Communicate with others using appropriate media; confidently share one"s views
PO2	and express herself/himself; demonstrate the ability to listen carefully, read and write
	analytically, and present complex information in a clear and concise manner to different
	groups.
	Critical thinking: Capability to apply analytic thought to a body of knowledge; analyse
	and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence;
PO3	identify relevant assumptions or implications; formulate coherent arguments; critically
	evaluate practices, policies and theories by following scientific approach to knowledge
	development.
	Problem solving: Capacity to extrapolate from what one has learned and apply their
PO4	competencies to solve different kinds of non familiar problems, rather than replicate
	curriculum content knowledge; and apply one's learning to real life situations.
	Analytical reasoning: Ability to evaluate the reliability and relevance of evidence;
PO5	identify logical flaws and holes in the arguments of others; analyze and synthesize data
100	from a variety of sources; draw valid conclusions and support them with evidence and
	examples, and addressing opposing viewpoints.
	Research-related skills: A sense of inquiry and capability for asking relevant/appropriate
	questions, problem arising, synthesizing and articulating; Ability to recognize cause-and-
PO6	effect relationships, define problems, formulate hypotheses, test hypotheses, analyze,
100	interpret and draw conclusions from data, establish hypotheses, predict cause-and effect
	relationships; ability to plan, execute and report the results of an experiment or
	investigation
	Cooperation/Team work: Ability to work effectively and respectfully with diverse teams;
PO7	facilitate cooperative or coordinated effort on the part of a group, and act together as a
	group or a team in the interests of a common cause and work efficiently as a member of a
	team.
PO8	Scientific reasoning: Ability to analyze, interpret and draw conclusions from

B. Sc Physics – Syllabus for candidates admitted from 2023-24 onwards.

	quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from
	an open-minded and reasoned perspective.
PO9	Reflective thinking: Critical sensibility to lived experiences, with self awareness and
P09	reflexivity of both self and society.
	Information/digital literacy: Capability to use ICT in a variety of learning situations,
PO10	demonstrate ability to access, evaluate, and use a variety of relevant information sources;
	and use appropriate software for analysis of data.

Program	n Specific Outcomes (PSOs)					
After the	After the successful completion of B. Sc Physics programme the students are expected to					
	Placement: To prepare the students who will demonstrate respectful engagement with					
PSO1	others" ideas, behaviors, and beliefs and apply diverse frames of reference to decisions					
	and actions.					
	Entrepreneur: To create effective entrepreneurs by enhancing their critical thinking,					
PSO2	problem solving, decision making and leadership skill that will facilitate start-ups and					
	high potential organizations					
	Research and Development: Design and implement HR systems and practices grounded					
PSO3	in researches that comply with employment laws, leading the organization towards					
	growth and development.					
PSO4	Contribution to Business World: To produce employable, ethical and innovative					
1504	professionals to sustain in the dynamic business world					
PSO5	Contribution to the Society: To contribute to the development of the society by					
P505	collaborating with stakeholders for mutual benefit.					
DSOF	Self-directed learning: Ability to work independently, identify appropriate resources					
PSO6	required for a project, and manage a project through to completion.					

Programme Educational Objectives (PEOs)

The B. Sc Physics programme describe accomplishments that graduates are expected to attain within five to seven years after graduation.

	Lifelong learning: Ability to acquire knowledge and skills, including learning how to
	learn, that are necessary for participating in learning activities throughout life, through
PEO1	self-paced and self-directed learning aimed at personal development, meeting economic,
	social and cultural objectives, and adapting to changing trades and demands of work
	place through knowledge/skill development/reskilling.
	Leadership readiness/qualities: Capability for mapping out the tasks of a team or an
	organization, and setting direction, formulating an inspiring vision, building a team who
PEO2	can help achieve the vision, motivating and inspiring team members to engage with that
	vision, and using management skills to guide people to the right destination, in a smooth
	and efficient way.
	Moral and ethical awareness/reasoning: Ability to embrace moral/ethical values in
	conducting one's life, formulate a position/argument about an ethical issue from
	multiple perspectives, and use ethical practices in all work. Capable of demonstrating
PEO3	the ability to identify ethical issues related to one's work, avoid unethical behaviour
TEOS	such as fabrication, falsification or misrepresentation of data or committing plagiarism,
	not adhering to intellectual property rights; appreciating environmental and
	sustainability issues; and adopting objective, unbiased and truthful actions in all aspects
	of work.
	Multicultural competence: To possess knowledge of the values and beliefs of multiple
PEO4	cultures and a global perspective; and capability to effectively engage in a multicultural
	society and interact respectfully with diverse groups.
	To carry out experiments to understand the laws and concepts of Physics. To apply the
PEO5	theories learnt and the skills acquired to solve real time problems. To acquire a wide
	range of problem solving skills, both analytical and computational and to apply them.

CREDIT DISTRIBUTION FOR 3 YEARS B. Sc PHYSICS PROGRAMME

Part	Course Type	Credits per Course	No. of Papers	Total Credits
Part I	Language – I (Tamil/Hindi/French)	3	4	12
Part II	Language – II (English)	3	4	12
	Core Courses- Theory	4	10	40
	Core Courses- Practical	3	6	18
_	Major Elective Courses- Theory	3	3	9
Part III	Major Elective Courses- Practical	-	-	-
	Generic Discipline Specific/ Allied Courses - Theory	4	4	16
	Generic Discipline Specific/ Allied Courses - Practical	3	2	6
			Total	89
	Non Major Elective Courses	2	2	4
	Skill Enhancement Courses	2	5	10
	Professional Competency Skill Enhancement Course	2	1	2
	EVS (Environmental Studies)	2	1	2
Part IV	Value Education	2	4 4 10 6 3 - 4 2 7 7 0 4 2 7 7 0 1	2
	Internship	2	1	2
	Field Project	2	1	2
	Research Project (for PG only)	-	-	-
	MOOC/ SWAYAM/ NPTEL Courses / Foundation course	2	2	2
			Total	26
Part V	Extension Activity (NSS/NCC/Physical Education)	1	1	1
Part VI	Naan Mudhalvan Scheme (Online Examination &Project work)/	2	-	-
			Total Credits	140

<u>CONSOLIDATED SEMESTER WISE AND COMPONENT WISE CREDIT</u> <u>DISTRIBUTION FOR 3 YEARS B. Sc PHYSICS PROGRAMME</u>

Parts	Semester I	Semester II	Semester III	Semester IV	Semester V	Semester VI	Total Credits
Part I	3	3	3	3	-	-	12
Part II	3	3	3	3	-	-	12
Part III	13	13	13	13	19	18	89
Part IV	4	4	3	6	7	2	26
Part V	-	-	-	-	-	1	1
Total	23	23	22	25	26	21	140

*Part I, II and Part III components will be separately taken into account for CGPA calculation and classification for the under graduate programmes and the other components IV and V have to completed during the duration of the programmes as per the norms, to be eligible for obtaining the UG degree.

METHOD OF EVALUATION

Evaluation	Evaluation Components					
	Continuous Internal Assessment Test					
	Assignments	3				
	Class Participation					
Internal Evaluation	Distribution of marks for Attendance (in percentage) 96 – 100: 5 Marks 91 – 95: 4 Marks 86 – 90: 3 Marks 81 – 85: 2 Marks	5	25 Marks			
External Evaluation	75 Marks					
	100 Marks					

Note: 1.UG Programmes- A candidate must score minimum 10 marks in Internal and 30 marks in External Evaluation.

2. PG Programmes- A candidate must score minimum 13 marks in Internal and 38 marks in External Evaluation.

College of Arts & Science

CONTINUOUS INTERNAL ASSESSMENT

Categorizing Outcome Assessment Levels Using Bloom's Taxonomy

level	Cognitive Domain	Description				
K1	Remember	It is the ability to remember the previously learned concepts or ideas.				
K2	Understand	The learner explains concepts or ideas.				
K3	Apply	The learner uses existing knowledge in new contexts.				
K4	K4AnalyzeThe learner is expected to draw relations among ideas and to compare and contrast.					
K5	Evaluate	The learner makes judgements based on sound analysis.				
K6	Create	The learner creates something unique or original.				

Question Paper Blue Print for Continuous Internal Assessment- I& II

Duration: 2 Hours Maximum: 50 m						narks	
Section	K level						
Section	K1	K2	K3	K4	K5	K6	Marks
A (no choice)	10						10 X 1 =10
B (no choice)		1	1				2 X 5 =10
C (either or choice)				3			3 x 10 = 30
Total						50 marks	

Note: K4 and K5 levels will be assessed in the Model Examination whereas K5 and K6 Levels will be assessed in the End Semester Examinations.

Question Paper Blue Print for Continuous Internal Assessment- I

Time: 2 Hours

Total Marks: 50 Marks

Minimum Pass: 20 Marks

Unit	Section - A	Section - B	Section - C
I	Q.N. 1, 2, 3, 4, 5	Q.N. 11	Q.N. 13 A, 13 B
I or II	-	-	Q.N. 14 A, 14 B
II	Q.N. 6, 7, 8, 9, 10	Q.N. 12	Q.N. 15 A, 15 B

<u>SECTION – A (10 X 1 = 10 Marks)</u>

ANSWER ALL THE QUESTIONS

$\underline{SECTION - B (2 X 5 = 10 Marks)}$

ANSWER ALL THE QUESTIONS

<u>SECTION - C (3 X 10 = 30 Marks)</u>

ANSWER ALL THE QUESTIONS (Either or Choice)

Question Paper Blue Print for Continuous Internal Assessment- II

Time: 2 Hours Total Marks: 50 Marks Minimum Pass: 20 Marks

Unit	Unit Section - A		Section - C		
III	Q.N. 1, 2, 3, 4, 5	Q.N. 11	Q.N. 13 A, 13 B		
III or IV	-	-	Q.N. 14 A, 14 B		
IV	Q.N. 6, 7, 8, 9, 10	Q.N. 12	Q.N. 15 A, 15 B		

<u>SECTION – A (10 X 1 = 10 Marks)</u>

ANSWER ALL THE QUESTIONS

<u>SECTION – B (2 X 5 = 10 Marks)</u>

ANSWER ALL THE QUESTIONS

<u>SECTION - C (3 X 10 = 30 Marks)</u>

ANSWER ALL THE QUESTIONS (Either or Choice)

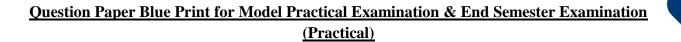
Question Paper Blue Print for Model Examination & End Semester Examination

Duration:	Maximum: 75 marks							
Section		K1	K2	K3	K4	K5	K6	Marks
A (no choice, three questions from each unit)								15 X 1 =15
B (choice, one question from each unit)			1	1				2 X 5 =10
	Courses with K4 as the highest cognitive level				4	1		
C (either or choice& two questions from	Course with K5 as the highest cognitive level wherein three K4 questions and two K5 questions are compulsory.				3	2		5 x 10 = 50
each unit)	Course with K6 as the highest cognitive level wherein two questions each on K4, K5 and one question on K6 are compulsory.				2	2	1	
Total							75 marks	

Question Paper Blue Print for Model Examination & End Semester Examination

Time: 2 Hours	Total Marks	um Pass: 30 Marks	
Unit	Section - A	Section - B	Section - C
Ι	Q.N. 1, 2, 3	Q.N. 16	Q.N. 21 A, 21 B
II	Q.N. 4, 5, 6	Q.N. 17	Q.N. 22 A, 22 B
III	Q.N. 7, 8, 9	Q.N. 18	Q.N. 23 A, 23 B
IV	Q.N. 10, 11, 12	Q.N. 19	Q.N. 24 A, 24 B
V	Q.N. 13, 14, 15	Q.N. 20	Q.N. 25 A, 25 B

<u>SECTION – A (15 X 1 = 15 Marks)</u>


ANSWER ALL THE QUESTIONS

<u>SECTION – B (2 X 5 = 10 Marks)</u>

ANSWER ANY TWO QUESTIONS

<u>SECTION – C (5 X 10 = 50 Marks)</u>

ANSWER ALL THE QUESTIONS (Either or Choice)

Time: 3 Hours	Total Marks: 60 Marks	Minimum Pass: 24 Marks
Practical Marks	Maximum Mark	Minimum Mark
Internal	40	16
External	60	24
Total	100	40

Evaluation for End Semester Examinations (Practical)

Record	10 marks
Formula with expansion	05 marks
Observation with data	20 marks
Viva-voce	05 marks
Calculation	15 marks
Result with units	05 marks
TOTAL	60 MARKS

*Submission of record with due certification is a must for external practical examinations.

**A student should complete all requires experiments to get 10 marks for the record.

College of Arts & Science

omous

Scheme of Examination for B. Sc Physics

Part	Course Code	Course Title	Ins. Hrs	Credit	CIA	ESE	Total
Ι	23UFTA01	Podhu Tamil - I	3	3	25	75	100
II	23UFEN01	General English – I	3	3	25	75	100
III	23UPHCT01	Core Course I - Properties of Matter and Sound	5	5	25	75	100
III	23UPHCP01	Core Course Practical - I	3	3	25	75	100
III	23UMAAT01	Allied Mathematics I - Algebra and Calculus	4	5	25	75	100
IV	23UPHFC01	Foundation Course – Introductory Physics	2	2	25	75	100
IV	23UTANE01	Non Major Elective Course - PechuKalai Thiran	3	2	25	75	100
	Total			23	175	525	700

First Year – Semester - I

First Year – Semester - II

Part	Course Code	Course Title	Ins. Hrs	Credit	CIA	ESE	Total
Ι	23UFTA02	Podhu Tamil - II	3	3	25	75	100
II	23UFEN02	General English – II	3	3	25	75	100
III	23UPHCT02	Core Course II - Heat, Thermodynamics and Statistical Mechanics	5	4	25	75	100
III	23UPHCP02	Core Course Practical – II	3	3	25	75	100
III	23UMAAP01	Allied Mathematics Practical	3	4	25	75	100
III	23UMAAT02	Allied Mathematics II – Differential Equations and Laplace Transforms	4	2	25	75	100
IV	23UPHSE01	Skill Enhancement Course I - Instrumentation	3	2	25	75	100
IV	23UGENE02	Non Major Elective Course - Oceanography	3	2	25	75	100
	Total			23	200	600	800

Part	Course Code	Course Title	Ins. Hrs	Credit	CIA	ESE	Total
Ι	23UFTA03	Podhu Tamil - III	3	3	25	75	100
II	23UFEN03	General English – III	3	3	25	75	100
III	23UPHCT03	Core Course III - General Mechanics and Classical Mechanics	5	4	25	75	100
III	23UPHCP03	Core Course Practical – III	3	3	25	75	100
III	23UCHAT01	Generic - III Allied Chemistry- I	4	4	25	75	100
III	23UCHAP01	Allied Chemistry –I (Practical*)	3	2	25	75	100
IV	23UPHSE02	Skill Enhancement Course II Entrepreneurial Based	2	1	25	75	100
IV	23UPHSE03	Skill Enhancement Course III - Computational methods and Programming in C	2	2	25	75	100
IV	23UES01	Environmental studies (EVS)	2	-	25	75	100
	Total			22	225	675	900

Second Year – Semester - III

Second Year – Semester - IV

Part	Course Code	Course Title	Ins. Hrs	Credit	CIA	ESE	Total
Ι	23UFTA04	Podhu Tamil - IV	3	3	25	75	100
II	23UFEN04	General English – IV	3	3	25	75	100
III	23UPHCT04	Core Course IV - Optics and Spectroscopy	5	4	25	75	100
III	23UPHCP04	Core Course Practical – IV*	3	3	25	75	100
III	23UCHAT02	Generic - IV Allied Chemistry- II	4	4	25	75	100
III	23UCHAP02	Allied Chemistry – II (Practical*)	2	2	25	75	100
IV	23UPHSE04	Skill Enhancement Course IV - Electronic devices	2	2	25	75	100
IV	23UPHSE05	Skill Enhancement Course V- Communication systems	2	2	25	75	100
IV	23UES01	Environmental studies (EVS)	2	2	25	75	100
	Total			25	200	600	800

College of Arts & Science (Autonomous)

Part	Course Code	Course Title	Ins. Hrs	Credit	CIA	ESE	Total
III	23UPHCT05	Core Course V - Atomic Physics and Lasers	5	5	25	75	100
III	23UPHCT06	Core Course VI - Relativity and Quantum Mechanics	5	4	25	75	100
III	23UPHCT07	Core Course VII - Electricity and Magnetism	5	4	25	75	100
III	23UPHE01	Elective I - Energy Physics	3	3	25	75	100
III	23UPHE02	Elective II - Materials Science	3	3	25	75	100
III	23UPHCP05	Core Course Practical – V*	3	3	25	75	100
IV	23UEV01	Value Education	2	2	25	75	100
IV	23UPHIO01	Internship/Industrial visit/Field visit**	-	2	25	75	100
	Total			26	200	600	800

Third Year – Semester - V

Third Year – Semester - VI

Part	Course Code	Course Title	Ins. Hrs	Credit	CIA	ESE	Total
III	23UPHCT08	Core Course VIII - Nuclear and Particle Physics	5	3	25	75	100
III	23UPHCT09	Core course IX - Solid State Physics	5	3	25	75	100
III	23UPHCT10	Core Course X - Digital Electronics &Microprocessor 8085	5	3	25	75	100
III	23UPHE03	Elective III - Nanoscience & Nanotechnology	2	3	25	75	100
III	23UPHCP06	Core Course Practical – VI*	2	3	25	75	100
IV	23UPHPR01	Project***	4	3	-	-	100
IV	23UPHPC01	Professional Competency Skills	2	2	25	75	100
V	23UEX01	Extension Activity	2	1	-	-	100
Total		27	21	150	450	800	

**Ins. Hrs – Instructional Hours, CIA- Continuous Internal Assessment, ESE- End Semester Examination

College of Arts & Science (Autonomous)

Course Code: 23UPHCT01

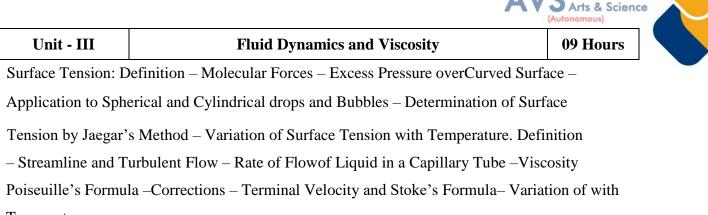
4 onwards. AVS College of (Autonomous) Hours/Week: 5 Credit: 5 THES OF MATTER AND SOLUDE

COURSE TITLE: CORE COURSE – I PROPERTIES OF MATTER AND SOUND

Course Overview:

Semester: I

- 1. Demonstrate the general view of elasticity
- 2. Apply basic physics law in daily life
- 3. Understand the mechanisms of bending of beams
- 4. Understand the waves and oscillations.


Learning Objectives:

- 1. Study of the properties of matter leads to information which is of practical value to both the physicist and the engineers.
- 2. It gives us information about the internal forces which act between the constituentparts of the substance.
- 3. Students who undergo this course are successfully bound to get a better insight and understanding of the subject.
- 4. Identify and describe properties of matter, including: flexibility, strength, transparency, hardness, water resistance, size, color, weight, and texture.
- 5. Identify and describe three phases of matter: solid, liquid, and gas. Identify and describe the particles that make up a solid, liquid, and gas.

Unit - IElasticity09 Hour

Hooke's Law – Stress-Strain Diagram – Elastic Constants –Poisson's Ratio – Relation between Elastic Constants and Poisson's Ratio – Workdone in Stretching and Twisting a wire – Twisting Couple on a Cylinder – Rigidity Modulus by Static Torsion – Torsional Pendulum (With and Without Masses).

Unit - II Bending of Beams		09 Hours			
Cantilever – Expression for Bending Moment – Expression for Depression at the Loaded end of					
the Cantilever – Oscillations of a Cantilever – Expression for Time Period – Experiment to find					
Young'sModulus - Non - Uniform Bending - Experiment to Determine Young'sModulus by					
Koenig's Method – Uniform Bending – Expression for Elevation – Experiment to determine.					
Young's Modulus using Microscope					

Temperature.	
--------------	--

Unit - IV	Waves and Oscillations	09 Hours				
Simple Harmonic Motion (SHM) – Differential Equation of SHM – Graphical Representation						
of SHM – Compos	of SHM – Composition of Two SHM in a Straight Line and at Right Angles – Lissajous's					
Figures- Free, Damped, Forced Vibrations – Resonance and Sharpness of Resonance.						
Laws of Transverse Vibration in Strings – Sonometer – Determination of AC Frequency using						
Sonometer – Determination of Frequency using Melde's String Apparatus						

Unit - V	Acoustics of Buildings and Ultrasonics	09 Hours	ĺ
----------	--	----------	---

Intensity of Sound - Decibel - Loudness of Sound - Reverberation - Sabine's Reverberation

Formula – Acoustic Intensity – Factors Affecting the Acoustics of Building Production of Ultrasonic Waves – Piezoelectric Crystal Method – Magnetostriction Effect – Application of UltrasonicWaves.

Text Book(s):

- 1. D.S. Mathur, 2010, Elements of Properties of Matter, S. Chand & Co.
- 2. BrijLal & N. Subrahmanyam, 2003, Properties of Matter, S. Chand & Co
- 3. D.R. Khanna & R.S. Bedi, 1969, Textbook of Sound, Atma Ram & sons
- Brij Lal and N. Subrahmanyam, 1995, A Text Book of Sound, Second revised edition, Vikas Publishing House.
- 5. R.Murugesan, 2012, Properties of Matter, S. Chand & Co.

Reference Books:

- 1. C.J. Smith, 1960, General Properties of Matter, OrientLongman Publishers
- 2. H.R. Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, R Chand & Co.
- 3. A.P French, 1973, Vibration and Waves, MIT IntroductoryPhysics, Arnold Heinmann India.

College of

Web Resources:

- 2. http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html
- 3. https://www.youtube.com/watch?v=gT8Nth9NWPM

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

Learning Outcomes: Upon successful completion of this course, the student will be able to					
COs	Statements	Bloom's Level			
CO1	Relate elastic behavior in terms of three modulii of elasticity andworking of torsion pendulum.	K 1			
CO2	Able to appreciate concept of bending of beams and analyzeth expression, quantify and understand nature of materials.	K2			
CO3	Explain the surface tension and viscosity of fluid and support the interesting phenomena associated with liquid surface, soap films provide an analogue solution to many engineeringproblems.	К3			
CO4	Analyze simple harmonic motions mathematically and apply them. Understand the concept of resonance and use it to evaluate the frequency of vibration. Set up experiment to evaluate frequency of ac mains	K4			
CO5	Understand the concept of acoustics, importance of constructing buildings with good acoustics.	K5			
K1	K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 – Create				

	Mapping (COs vs POs)								
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9									PO9
CO1	S	S	S	L	М	S	L	L	L
CO2	М	S	S	L	М	S	L	L	L
CO3	S	М	S	L	М	М	М	L	L
CO4	S	S	S	L	М	М	М	L	L
CO5	S	S	М	L	М	М	М	L	L

S - Strong, M - Medium, L - Low

S College of Arts & Science (Autonomous)

COURSE TITLE: CORE COURSE PRACTICALS I – PROPERTII EXPERIMENTS	ES OF MATTER

Course Overview:

1. To understand practically various physics applications

Learning Objectives:

- Apply various physics concepts to understand Properties of Matter, set up experimentation to verify theories, quantify and analyse, ableto do error analysis and correlate results
- 1. Determination of rigidity modulus without mass using Torsional pendulum.
- 2. Determination of rigidity modulus with masses using Torsional pendulum
- 3. Determination of moment of inertia of an irregular body.
- 4. Verification of parallel axes theorem on moment of inertia.
- 5. Verification of perpendicular axes theorem on moment of inertia.
- 6. Determination of moment of inertia and g using Bifilar pendulum.
- 7. Determination of Youngs modulus by stretching of wire with known masses.
- 8. Verification of Hooks law by stretching of wire method.
- 9. Determination of Youngs modulus by uniform bending load depression graph.
- 10. Determination of Youngs modulus by non-uniform bending scale & telescope.
- 11. Determination of Youngs modulus by cantilever load depression graph.
- 12. Determination of Youngs modulus by cantilever oscillation method
- 13. Determination of Youngs modulus by Koenigs method (or unknown load)
- 14. Determination of rigidity modulus by static torsion.
- 15. Determination of Y, n and K by Searles double bar method.
- 16. Determination of surface tension & interfacial surface tension by dropweight method.
- 17. Determination of co-efficient of viscosity by Stokes method terminal velocity.
- 18. Determination of critical pressure for streamline flow.
- 19. Determination of Poissons ratio of rubber tube.
- 20. Determination of viscosity by Poiseullies flow method.

- 21. Determination radius of capillary tube by mercury pellet method.
- 22. Determination of g using compound pendulum.

Reference books:

1. M.N. Srinivasan, S. Balasubramanian, R. Ranganathan, A textbook of PRACTICAL PHYSICS, Sultan Chand and sons educational publishers, New Delhi. Edition 2017

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

Learning Outcomes: Upon successful completion of this course, the student will be able to				
COs	Statements	Bloom's Level		
CO1	Relate elastic behavior in terms of three modulii of elasticity and working of torsion pendulum.	K1		
CO2	Able to appreciate concept of bending of beams and analyze the expression, quantify and understand nature of materials.	K2		
CO3	Explain the surface tension and viscosity of fluid and support the interesting phenomena associated with liquid surface, soap films provide an analogue solution to many engineeringproblems.	К3		
CO4	Analyze simple harmonic motions mathematically and apply them. Understand the concept of resonance and use it to evaluate the frequency of vibration. Set up experiment to evaluate frequency of ac mains	K4		
CO5	Understand the concept of acoustics, importance of constructing buildings with good acoustics.	K5		
K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 – Create				

	Mapping (COs vs POs)								
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO								PO9	
CO1	S	М	S	L	М	S	L	L	L
CO2	Μ	S	S	L	М	S	L	L	L
CO3	S	М	S	L	М	М	М	L	L
CO4	S	S	S	L	М	М	М	L	L
CO5	S	S	М	L	М	М	М	L	L

S - Strong, M - Medium, L - Low

Semester: I Course Code: 23UPHFC01 Hours/Week:2 Credit: 2

COURSE TITLE: FOUNDATION COURSE - INTRODUCTORY PHYSICS

Course Overview:

- 1. Demonstrate general physics phenomena
- 2. Apply basic physics law in daily life
- 3. Understand the fundamentals of physics
- 4. Understand the nuclear physics and its reactions.

Learning Objectives:

- 1. To help students get an overview of Physics before learning their core courses.
- 2. To serve as a bridge between the school curriculum and the degree programme.
- 3. To understand the fundamentals of physics
- 4. To understand the energy
- 5. To understand the motion and properties of matter

Unit - I	Fundamentals	04 Hours
----------	--------------	----------

Vectors, Scalars – Examples for Scalars and Vectors from Physical Quantities – Addition,

Subtraction of Vectors – Resolution and Resultantof Vectors – Units and Dimensions– Standard Physics Constants.

Unit - II Forces 04 Hours

Different Types of Forces – Gravitational, Electrostatic, Magnetic, Electromagnetic, Nuclear – Mechanical Forces like, Centripetal, Centrifugal, Friction, Tension, Cohesive, Adhesive Forces.

Unit - III	Energy	04 Hours		
Different forms of Energy – Conservation Laws of Momentum, Energy – Types of Collisions –				

Angular Momentum – Alternate Energy Sources – Real Life Examples.

Unit - IV	Motion	04 Hours	
-----------	--------	----------	--

Types of Motion – Linear, Projectile, Circular, Angular, Simple Harmonic Motions – Satellite Motion – Banking of a Curved Roads – Stream Line and Turbulent Motions – Wave Motion – Comparison of Light and Sound Waves – Free, Forced, Damped Oscillations.

Unit - V	Properties of Matter	04 Hours

Surface Tension - Shape of Liquid Drop - Angle of Contact - Viscosity - Lubricants -

Capillary Flow - Diffusion - Real Life Examples - Properties and Types of Materials in Daily

College of

use - Conductors, Insulators - Thermal and Electric.

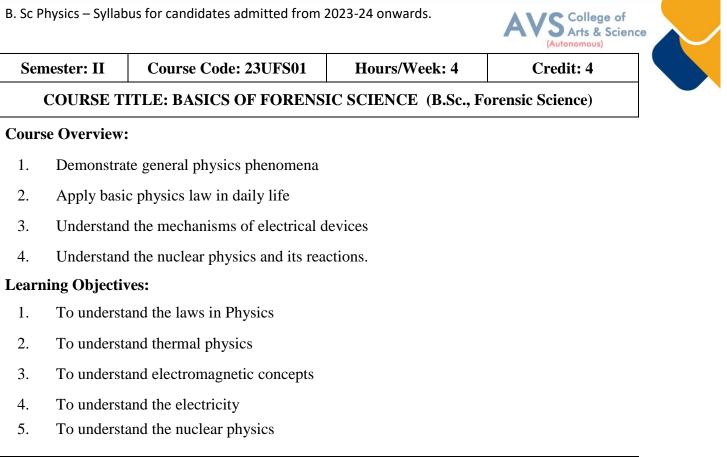
Text Book(s):

- 1. D.S. Mathur, 2010, Elements of Properties of Matter, S. Chand & Co
- 2. BrijLal & N. Subrahmanyam, 2003, Properties of Matter, S. Chand & Co.

Reference Books:

1. H.R. Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, S. Chand & Co.

Web Resources:


- 1. http://hyperphysics.phy- astr.gsu.edu/hbase/permot2.htmlhttps://science.nasa.gov/ems/
- 2. https://eesc.columbia.edu/courses/ees/climate/lectures/radiation_hays/

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

Learning Outcomes: Upon successful completion of this course, the student will be able to						
COs	Statements	Bloom's Level				
CO1	Understand the Fundamentals of Physics	K1				
CO2	Understand the Force	K2				
CO3	Demonstrate general physics in energy	K3				
CO4	Apply basic physics in motion	K4				
CO5	To understand the concept of properties of matter	K5				
K1	– Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 –	Create				

	Mapping (COs vs POs)								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	S	S	S	L	М	S	L	L	L
CO2	S	S	S	L	М	S	L	L	L
CO3	S	S	S	L	М	М	М	L	L
CO4	S	S	S	L	М	М	М	L	L
CO5	S	S	М	L	М	М	М	L	L

S - Strong, M – Medium, L – Low

Unit - I	Mechanics	07 Hours

Force, Conservative and Non conservative force, rotational motion of inertia, expression of

M.I. of regular shaped bodies, Keplar's law, Acceleration due to gravity, Simple harmonic

motion and Compound pendulum, Newton's laws of motion

Unit - II	Thermal Physics	07 Hours	

Concept of temperature, ideal gas equation and its laws, Vander waals equations, reversible

And irreversible process, Zerothlaw, first, second and third law of thermodynamics,

Carnot's cycle.

Unit - III	Electro Magnetism	07 Hours
Coulomb's law, ele	ectric field, magnetic field due to current, Gauss theorem and its	

applications, Amperes law, Kirchhoff's law and their applications

Unit - IV	Wheat Stone Bridge	07 Hours
-----------	--------------------	----------

Wheatstone bridge and its sensitivity, rectifiers, amplifiers, semiconductors an its types of

Junction, paramagnetic, diamagnetic, ferromagnetic materials and properties.

Unit - V	Nuclear Physics	07 Hours
----------	-----------------	----------

Nuclear forces, Nuclear models(elementary ideas), concept of nuclear quantum number,

Magic number. Nuclear reactions: Artificial activity, transmutations of elements, fission,

Fusion, radio activity, half life period, nuclear reactor.

Text Book(s)

- 1. Engineering physics 7th enlarged, revised edition 2004, Schand and company.
- 2. Modern Physics concept and application, Sanjeev puri, Narosa Publications.

Reference Books:

- 1. Mechanics, Murugesan
- 2. William H. hai and john. A Engineering electromagnetic, Mc graw hill

Web Resources:

- 1. https:/online courses. Swayam2.ac.in/nec19 sc05/preview
- 2. https://www.mooc-list.com/course/basic physics-open2study

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

Learning Outcomes: Upon successful completion of this course, the student will be able to						
COs	Statements	Bloom's Level				
CO1	Understand the quantum mechanics and electromagnetic physics	K1				
CO2	Understand the thermal physics	K2				
CO3	Demonstrate general physics phenomena	K3				
CO4	Apply basic physics in daily life	K4				
CO5	To understand the nuclear physics and its reactions.	K5				
K1 -	K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 – Create					

	Mapping (COs vs POs)								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	S	S	S	L	М	S	L	L	L
CO2	S	S	S	L	М	S	L	L	L
CO3	S	S	S	L	М	М	М	L	L
CO4	S	S	S	L	М	М	М	L	L
CO5	S	S	М	L	М	М	М	L	L

S - Strong, M – Medium, L – Low

Semester: II	Course Code: 23UFSE01	Hours/Week: 3	Credit: 3	

COURSE TITLE: BASICS OF PHYSICS LAB (B.Sc., Forensic Science)

Course Overview:

1. To understand practically various physics applications

Learning Objectives:

- 1. Apply various physics concepts to understand Mechanics, Thermal physics set up experimentation to verify theories, quantify and analyze, able to do error analysis and correlate results
- 1. Standard operating procedures for Vernier Caliper, Micrometer Screw Guage and Travelling Microscope.
- 2. To determine the value of 'g' by the compound pendulum.
- 3. To find the moment of inertia of a fly wheel about its own axis of rotation OR.
- 4. To verify Newton law of cooling.
- 5. To determine the moment of inertia of the given irregular shaped body by Torsion pendulum.
- 6. To demonstrate gravity of Newton's law.

Reference books:

1. M.N. Srinivasan, S. Balasubramanian, R. Ranganathan, A textbook of PRACTICAL PHYSICS, Sultan Chand and sons educational publishers, New Delhi. Edition 2017

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

Learning Outcomes: Upon successful completion of this course, the student will be able to					
COs	Statements	Bloom's Level			
CO1	Understand the Fundamentals of Physics	K1			
CO2	Understand the Force	K2			
CO3	Demonstrate general physics in energy	K3			
CO4	Apply basic physics in motion	K4			
CO5	To understand the concept of properties of matter	K5			
K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 – Create					

College of arts & Science

	Mapping (COs vs POs)								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	S	S	S	L	М	S	L	L	L
CO2	S	S	S	L	М	S	L	L	L
CO3	S	S	S	L	М	М	М	L	L
CO4	S	S	S	L	М	М	М	L	L
CO5	S	S	М	L	М	М	М	L	L

S - Strong, M – Medium, L – Low

Semester: II	Course Code: 23UPHCT02	Hours/Week:5	Credit: 4				
COURSE TITLE: CORE COURSE II - HEAT, THERMODYNAMICS AND STATISTICAL MECHANICS							

Course Overview:

- 1. Demonstrate general physics phenomena
- 2. Apply basic physics law in daily life
- 3. Understand the mechanisms of electrical devices
- 4. Understand the heat and its reactions.

Learning Objectives:

- 1. To understand the laws in Physics
- 2. To understand thermal physics
- 3. To understand thermo dynamic concepts
- 4. To understand the statistical mechanics
- 5. To understand the heat transfer

Unit - I	Calorimetry	09 Hours
----------	-------------	----------

Specific Heat Capacity - Specific Heat Capacity of Gases CP& CV- Meyer's Relation - Joly's

Method for Determination of CV – Renault's Method for Determination of CP.

Low Temperature Physics: Joule-Kelvin Effect - Porous Plug Experiment - Joule -

Thomson Effect – Boyle temperature – Temperature of Inversion

AVS College of Arts & Science

Unit - II	

Thermodynamics-I

09 Hours

Zeroth Law and First Law of Thermodynamics – P-V Diagram – HeatEngine – Efficiency of Heat Engine – Carnot's Engine, Construction, Working and Efficiency of Petrol Engine and Diesel Engines – Comparison of Engines.

Unit - III	III Thermodynamics-II 09 Hours					
Second Law of Thermodynamics – Entropy of an Ideal Gas – Entropy Change in Reversible and						
Irreversible Processes – T - S Diagram – Thermodynamical scale of Temperature – Maxwell's						
Thermodynamical Relations – Clasius - Clapeyron's Equation (First Latent Heat Equation) – Third						
Law of Thermodyn	Law of Thermodynamics – Unattainability of Absolute Zero – HeatDeath.					

Modes of Heat Transfer: Conduction, Convection and Radiation.

Conduction: Thermal Conductivity – Determination of Thermal Conductivity of a Good

Conductor by Forbe's Method – DeterminationOf thermal Conductivity of a Bad Conductor

by Lee's Disc Method.

Radiation: Black Body Radiation (Ferry's Method) – Distribution of Energy in Black Body

 $Radiation-Wien's\ Law\ and\ Rayleigh\ Jean's\ Law-Planck's\ Law\ of\ Radiation-Stefan's\ Stefan's\ Stefan'$

Deduction of Newton's Law of Cooling from Stefan's Law.

Unit - VStatistical mechanics09 Hours

Definition of Phase-Space - Micro and Macro States - Ensembles - Different types of

 $Ensembles-Classical \ and \ Quantum \ Statistics-Maxwell \ - \ Boltzmann \ Statistics-$

-Bose - Einstein Statistics - Fermi- Dirac Statistics - Comparison of three statistics.

Text Book(s):

- 1. Brijlal & N. Subramaniam, 2000, Heat and Thermo dynamics, S. Chand & Co.
- 2. Narayanamoorthy & Krishna Rao, 1969, Heat, Triveni Publishers, Chennai.
- V.R.Khanna & R. S. Bedi, 1998 1st Edition, Text book of Sound, Kedharnaath Publish & Co, Meerut
- Brijlal and N. Subramanyam, 2001, Waves and Oscillations, Vikas Publishing House, New Delhi.

- 5. Ghosh, 1996, Text Book of Sound, S. Chand &Co.
- 6. R. Murugeshan & Kiruthiga Sivaprasath, Thermal Physics, S. Chand& Co.

Reference Books:

- 1. J.B. Rajam & C.L. Arora, 1976, Heat and Thermodynamics, 8th edition, S. Chand & Co. Ltd.
- 2. D.S. Mathur, Heat and Thermodynamics, Sultan Chand & Sons.
- 3. Gupta, Kumar, Sharma, 2013, Statistical Mechanics, 26th Edition, S. Chand & Co.
- 4. Resnick, Halliday & Walker, 2010, Fundamentals of Physics, 6thEdition.
- 5. Hugh D. Young, Roger A. Freedman, 2021University Physics with Modern Physics 15th Edition, Pearson.

Web Resources:

- 1. <u>https://youtu.be/M_5KYncYNyc</u>
- 2. https://www.youtube.com/watch?v=4M72kQulGKk&vl=en

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

Learning Outcomes: Upon successful completion of this course, the student will be able to					
COs	Statements	Bloom's Level			
CO1	Acquires knowledge on how to distinguish between temperature and heat. Introduce him/her to the field of thermometry and explain practical measurements of high temperature as well as low temperature physics. Student identifies the relationship between heat capacity, specific heat capacity. The study of Low temperature Physics sets the basis for the students to understand cryogenics, superconductivity, super fluidity and CondensedMatter Physics	K1			
CO2	Derive the efficiency of Carnot's engine. Discuss the implications of the laws of Thermodynamics in diesel and petrolengines	K2			
CO3	Able to analyze performance of thermodynamic systems viz efficiency by problems. Gets an insight into thermodynamic properties like enthalpy, entropy	K3			
CO4	Study the process of thermal conductivity and apply it to good and bad conductors. Quantify different parameters related to heat, relate them with various physical parameters and analyze them	K4			
CO5	Interpret classical statistics concepts such as phase space, ensemble, Maxwell- Boltzmann distribution law. Develop the statistical interpretation of Bose- Einstein and Fermi-Dirac. Apply to quantum particles such as photon and electron	K5			
K1		Create			

	Mapping (COs vs POs)								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	S	S	S	S	S	S	S	М	S
CO2	М	S	S	S	М	S	S	М	М
CO3	S	S	S	М	S	S	S	М	S
CO4	S	S	S	S	S	S	S	М	М
CO5	S	S	М	S	S	S	М	М	S

S - Strong, M – Medium, L – Low

Semester: II	Course Code: 23UPHCP02	Hours/Week: 3	Credit: 3			
COURSE TITLE: CORE COURSE PRACTICAL II - HEAT, OSCILLATIONS, WAVES & SOUND EXPERIMENTS						

Course Overview:

1. To understand practically various physics applications

Learning Objectives:

1. Apply their knowledge gained about the concept of heat and sound waves, resonance, calculate frequency of ac mains set up experimentation to verify theories, quantify and analyze, able to doerror analysis and correlate results

(Any EIGHT Experiments)

- 1. Determination of specific heat by cooling graphical method.
- 2. Determination of thermal conductivity of good conductor by Searle's method.
- 3. Determination of thermal conductivity of bad conductor by Lee's disc method.
- 4. Determination of thermal conductivity of bad conductor by Charlatan's method.
- 5. Determination of specific heat capacity of solid.
- Determination of specific heat of liquid by Joule's electrical heating method (applying radiation correction by Barton's correction/graphicalmethod),
- 7. Determination of Latent heat of a vaporization of a liquid.

- AVS College of Arts & Science (Autonomous)
- 8. Determination of Stefan's constant for Black body radiation.
- 9. Verification of Stefan's-Boltzmann's law.
- **10**. Determination of thermal conductivity of rubber tube.
- 11. Helmholtz resonator.
- 12. Frequency of tuning fork using Sonometer.
- 13. Determination of velocity of sound using Kunds tube.
- 14. Determination of frequency of an electrically maintained tuning fork
- 15. To verify the laws of transverse vibration using sonometer.
- 16. To verify the laws of transverse vibration using Melde's apparatus.
- 17. To compare the mass per unit length of two strings using Melde's apparatus.

Frequency of AC by using sonometer.

Reference books:

 M.N. Srinivasan, S. Balasubramanian, R. Ranganathan, A textbook of PRACTICAL PHYSICS, Sultan Chand and sons educational publishers, New Delhi. Edition 2017

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

Acquires knowledge on Instrumentation				
Acquires knowledge on instrumentation	K1			
To know the transducers and sensors	K2			
Acquires knowledge on how to use digital Instruments	K3			
To know the functions of medical instrumentations	K4			
CO5 Understand the concepts of gas analyzers				
A T U	cquires knowledge on how to use digital Instruments to know the functions of medical instrumentations			

	Mapping (COs vs POs)								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	М	S	S	S	S	S	S	М	S
CO2	М	S	S	S	М	S	S	М	М
CO3	S	S	S	М	S	S	S	М	S
CO4	S	S	S	S	S	S	S	М	М
CO5	S	S	М	S	S	S	М	М	S

S - Strong, M – Medium, L – Low

Semester: II	Course Code: 23UPHSE01	Hours/Week:2	Credit: 2			
COURSE TITLE: SKILL ENHANCEMENT COURSE I - INSTRUMENTATION						

Course Overview:

- 1. Demonstrate general physics phenomena
- 2. Apply basic physics law in daily life
- 3. Understand the mechanisms of electrical devices
- 4. Understand the heat and its reactions.

Learning Objectives:

- 1. To study the instrument with its principle and observe themethod of their functioning.
- 2. To provide a good foundation in measurements
- 3. To inspire interest in the knowledge of concepts regardingmeasurements.
- 4. To understand the statistical mechanics
- 5. To understand the heat transfer

Unit - I Performance Characteristics of an Instrumentation System	04 Hours
--	----------

Introduction - System configuration - Problem Analysis - Basic Characteristics of measuring

devices - Calibration - Generalized measurement - Zero - order system - Second order system-

Dead timeelement – Specification and testing of dynamic response.

Unit - II	Sensors and Transducers	04 Hours
-----------	-------------------------	----------

Basic principles of sensors – pressure sensor (Strain Gauge) – IR sensor -Characteristics of transducers – variable resistance transducer – variable capacitance transducer – Voltage and current transducer.

Unit - III	Digital Instruments	04 Hours	
Introduction – Digital Multimeter – Digital panel meter – Digital frequency meter – Digital			
Measurement of time – Universal counter – Digital tachometer – Digital PH meter.			

Unit - IVMedical Instrumentation04 Hours	ł	
--	---	--

ECG - EEG - Lead systems and recording methods - typical waveforms - X-ray machine -

 $Digital\ Stethoscope-Computer\ tomography-MRI-Ultrasonography-Thermography$

- Pacemakers - Ventilators - Dialyzers.

Unit - V	Gas Analyzers and Pollution Monitoring Instruments	
Types of gas analyz	zers – Oxygen, NO2 and H2S types – IR analyser – Airpollutio	n standards –

Air pollution detector – Dust and smoke detector – Radiation monitoring instruments – Area radiation dosimeter – personal radiation dosimeter – radiation warning alarm.

Text Book(s):

 E.A. Doebelin, Measurement Systems-Applications and Design, TataMcGraw Hill,(1990)
 CS Rangan, GR Sharma, V.S.V. Mani, Instrumentation Devices andSystems, Second Edition, Tata McGraw Hill, (2011) 3.R.S. Khandpur, Hand book of Analytical Instruments, Tata McGraw Hill (2003).

Reference Books:

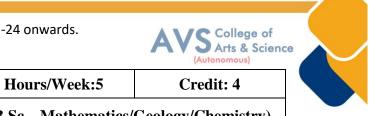
- 1. D. Patranabis, Sensors and Transducers, Prentice Hall of India, (1999)
- 2. M. Arumugam, Bio-medical Instrumentation, Anuradha Agencies, (2002)
- John G. Webster, Medical Instrumentation: Application and Design, John Wiley & Sons Inc (2009)
- 4. John P. Bentley Principles of Measurement Systems, Third Edition, Pearson Education, (2000)

AVS College of Arts & Science (Autonomous)

Web Resources:

1.https://www.electronicshub.org/ir-sensor/

2.https://www.electronicsforu.com/technology-trends/learn-electronics/ir-led-infrared-sensor-basics


Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

Learning Outcomes: Upon successful completion of this course, the student will be able to				
COs	Statements	Bloom's Level		
CO1	Acquires knowledge on Instrumentation	K1		
CO2	To know the transducers and sensors	K2		
CO3	Acquires knowledge on how to use digital Instruments	K3		
CO4	To know the functions of medical instrumentations	K4		
CO5	Understand the concepts of gas analyzers	K5		
K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 – Create				

	Mapping (COs vs POs)								
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9								PO9	
CO1	М	S	S	S	S	S	S	М	S
CO2	М	S	S	S	М	S	S	М	М
CO3	S	S	S	М	S	S	S	М	S
CO4	S	S	S	S	S	S	S	М	М
CO5	S	S	М	S	S	S	М	М	S

 ${\bf S}$ - Strong, ${\bf M}-{\bf Medium},\,{\bf L}-{\bf Low}$

Course Code: 23UPHA02

COURSE TITLE: ALLIED PHYSICS – II (For B.Sc., Mathematics/Geology/Chemistry)

Course Overview:

Semester: II

- 1. Demonstrate general physics phenomena
- 2. Apply basic physics law in daily life
- 3. Understand the mechanisms of electrical and electronic devices
- 4. Understand the heat and its reactions.

Learning Objectives:

- 1. To understand the basic concepts of optics.
- 2. To provide a good foundation in modern Physics
- 3. To inspire interest in the knowledge of concepts of Relativity and Quantum Physics.
- 4. To understand the semiconductorPhysics
- 5. To understand the Electronics

Unit - I	Optics	07 Hours

Interference – Interference in Thin Films – Colors of Thin Films – Air Wedge – Determination of Diameter of a Thin Wire by Air Wedge – Diffraction – Diffraction of Light Vs Sound – Normal Incidence – Experimental Determination of Wavelength using Diffraction Grating (No Theory) – Polarization – Polarization by Double Reflection – Brewster's Law – Optical Activity – Application in Sugar Industries

Unit - II	- II Atomic Physics		
Atom Models – Bohr Atom Model – Mass Number – Atomic Number – Nucleons – Vector			
Atom Model – Various Quantum Numbers – Pauli's Exclusion Principle – Electronic			
Configuration-Periodic Classification Of Elements - Bohr Magneton - Stark Effect -			
Zeeman Effect (Elementary Ideas Only) – Photo ElectricEffect – Einstein's Photoelectric			
Equation – Applications of Photoelectric Effect: Solar Cells, Solar Panels, Optoelectric Devices			

Unit - III	Nuclear Physics	07 Hours
Nuclear Models –	Liquid Drop Model – Magic Numbers – Shell Model – Nuclear	Energy –
Mass Defect – Binding Energy – Radioactivity – Uses – Half Life – Mean Life - Radio		Radio
Isotopes and uses -	-Controlled and Uncontrolled Chain Reaction – Nuclear Fission	– Energy

Released In Fission – Chain Reaction – Critical Reaction – Critical Size – Atom Bomb – Nuclear Reactor – Breeder Reactor – Importance of Commissioning PFBR in Our Country – Heavy Water Disposal, Safety of Reactors: Seismic andFloods –Introduction to DAE, IAEA – Nuclear Fusion – Thermonuclear Reactions – Differences between Fission and Fusion.

Unit - IV	Introduction to Relativity and Gravitational Waves	07 Hours
Frame of Reference	e – Postulates of Special Theory of Relativity –Galilean Transfo	ormation
Equations – Lorentz Transformation Equations – Derivation – Length Contraction – Time		
Dilation – Twin Pa	radox – Mass – Energy Equivalence – Introduction on Gravitati	ional Waves,
LIGO, ICTS Oppor	rtunities at International Centre for Theoretical Sciences	

Unit - V	Semiconductor Physics	07 Hours
----------	-----------------------	----------

P-N Junction Diode - Forward And Reverse Biasing - Characteristic of Diode - Zener Diode -

Characteristic of ZenerDiode - Voltage Regulator - Full Wave Bridge Rectifier -

Construction and Working - Advantages (No Mathematical Treatment) - USB Cell Phone

Charger –Introduction to E- Vehicles and EV Charging Stations

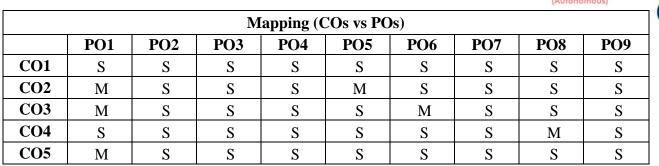
Text Book(s):

- 1. R. Murugesan (2005), Allied Physics, S. Chand & Co, New Delhi.
- 2. K. Thangaraj and D. Jayaraman (2004), Allied Physics, Popular Book Depot, Chennai.
- 3. Brijlal and N. Subramanyam (2002), Text book of Optics, S. Chand & Co, New Delhi.
- 4. R. Murugesan (2005), Modern Physics, S. Chand & Co, New Delhi.
- 5. A. Subramaniyam Applied Electronics, 2nd Edn., National Publishing Co., Chennai.

Reference Books:

- Resnick Halliday and Walker (2018), Fundamentals of Physics, 11thEdn., John Willey and Sons, Asia Pvt. Ltd., Singapore.
- 2. D.R. Khanna and H.R. Gulati (1979). Optics, S Chand & Co. Ltd., New Delhi.
- 3. A. Beiser (1997), Concepts of Modern Physics, Tata Mc Graw Hill Publication, New Delhi.
- Thomas L. Floyd (2017), Digital Fundamentals, 11thEdn.Universal Book Stall, New Delhi.
- 5. V.K .Metha (2004), Principles of electronics, 6thEdn. S.Chandand Company, New Delhi.

Web Resources:


- <u>https://www.berkshire.com/learning-center/delta-p-</u> <u>facemask/https://www.youtube.com/watch?v=QrhxU47gtj4ht</u> <u>tps://www.youtube.com/watch?time_continue=318&v=D38Bj_gUdL5U&feature=emb_logo</u>
- 2. <u>https://www.youtube.com/watch?v=JrRrp5F-Qu4</u>
- 3. https://www.validyne.com/blog/leak-test-using-pressure-transducers/
- 4. https://www.atoptics.co.uk/atoptics/blsky.htm -
- 5. <u>https://www.metoffice.gov.uk/weather/learn- about/weather/optical-effects</u>

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

COs	Statements	Bloom's Level
CO1	Explain the concepts of interference diffraction using principles of superposition of waves and rephrase the concept of polarization based on wave patterns	K1
CO2	Outline the basic foundation of different atom models and various experiments establishing quantum concepts. Relate the importance of interpreting improving theoretical models based on observation. Appreciate inter disciplinary nature of science and in solar energy related applications.	K2
CO3	Summarize the properties of nuclei, nuclear forces structure of atomic nucleus and nuclear models. Solve problems on delay rate half-life and mean-life. Interpret nuclear processes like fission and fusion. Understand the importance of nuclear energy, safety measures carried and getour Govt. agencies like DAE guiding the country in the nuclear field.	K3
CO4	To describe the basic concepts of relativity like equivalence principle, inertial frames and Lorentz transformation. Extend their knowledge on concepts of relativity and vice versa. Relate this with current research in this field and get an overview of research projects of National and International importance, like LIGO, ICTS, and opportunities available.	K4
CO5	Summarize the working of semiconductor devices like junction diode, Zener diode, transistors and practical devices we daily use like USB chargers and EV charging stations.	K5

S College of Arts & Science

(Autonomous)

 ${\bf S}$ - Strong, ${\bf M}-{\bf Medium},\,{\bf L}-{\bf Low}$

Semester: II	Course Code: 23UPHAP02	Hours/Week: 3	Credit: 2
COURSE TITLE: ALLIED PHYSICS PRACTICALS – II (For B.Sc.,			
Mathematics/Geology/Chemistry)			

Course Overview:

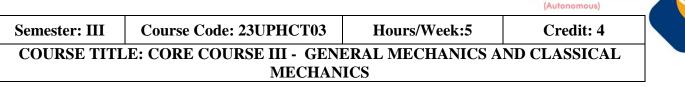
1. To understand practically various physics applications

Learning Objectives:

- Apply various Physics concepts to understand concepts of Light, electricity and magnetism and waves, set up experimentation to verify theories, quantify and analyze, able to do error analysis and correlate results
- 1. Radius of curvature of lens by forming Newton's rings
- 2. Thickness of a wire using air wedge
- 3. Wavelength of mercury lines using spectrometer and grating
- 4. Refractive index of material of the lens by minimum deviation
- 5. Refractive index of liquid using liquid prism
- 6. Determination of AC frequency using sonometer
- 7. Specific resistance of a wire using PO box
- 8. Thermal conductivity of poor conductor using Lee's disc
- 9. Determination of figure of merit table galvanometer
- 10. Determination of Earth's magnetic field using field along the axis of a coil
- 11. Characterisation of Zener diode

AVS College of Arts & Science (Autonomous)

- 12. Construction of Zerner/IC regulated power supply
- 13. Construction of AND, OR, NOT gates using diodes and transistor NOR gate as a universal building block


Reference books:

1. M.N. Srinivasan, S. Balasubramanian, R. Ranganathan, A textbook of PRACTICAL PHYSICS, Sultan Chand and sons educational publishers, New Delhi. Edition 2017

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

	ing Outcomes: successful completion of this course, the student will be able to	
COs	Statements	Bloom's Level
CO1	Understand the Newton's Law of motion, understand general theory of relativity, Kepler's laws and Realize the basic principles behind planetary motion	K1
CO2	Acquire the knowledge on the conservation laws	K2
CO3	Apply conservation law and calculate energy of various systems, understand and differentiate conservative and non-conservative forces	K3
CO4	Gain knowledge on rigid body dynamics and solve problems based on this concept	K4
CO5	Appreciate Lagrangian system of mechanics, apply D'Alemberts principle	K5
K1	– Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 –	Create

	Mapping (COs vs POs)								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	S	S	S	М	S	S	S	М	S
CO2	S	S	S	М	S	М	S	S	S
CO3	S	S	S	S	S	S	М	S	М
CO4	М	S	S	S	М	S	S	М	S
CO5	S	S	М	S	S	М	S	S	S

Course Overview:

- 1. Demonstrate general physics phenomena.
- 2. Apply basic physics law in daily life.
- 3. Understand the mechanisms of electrical devices.
- 4. Understand the physics laws.

Learning Objectives:

- 1. To have a basic understanding of the laws and principles of mechanics.
- 2. To apply the concepts of forces existing in the system.
- 3. To understand the forces of physics in everydaylife.
- 4. To visualize conservation laws.
- 5. To apply Lagrangian equation to solve complex problems.

Unit - I Laws of Motion & G	avitation 09 Hours
-----------------------------	--------------------

Newton's Laws - Forces - Equations of Motion - Frictional Force - Motion of a particle in a

Uniform Gravitational Field – Types of Everyday Forces in Physics.

Classical Theory of Gravitation - Kepler's Laws, Newton's Law of Gravitation - Determination of

G by Boy's Method - Earth - Moon System - Weightlessness - Earth Satellites - Parking Orbit -

Earth Density – Mass of The Sun – Gravitational Potential.

	Unit - II	Conservation Laws of Linear and Angular Momentum	09 Hours	
--	-----------	--	----------	--

Conservation of Linear and Angular Momentum – Internal Forces and momentum

Conservation - Center of Mass - Examples - General Elastic Collision of Particles of

Different Masses - System with Variable Mass - Examples - Conservation of Angular

Momentum – Torque due to Internal Forces – Torque due to Gravity – Angular Momentum

about Center of Mass – Proton Scattering by Heavy Nucleus.

Unit - III	Conservation Laws of Energy	09 Hours	
------------	-----------------------------	----------	--

Introduction – Significance of Conservation Laws – Law of Conservation of Energy concepts of Work- Power – Energy – Conservative Forces – Potential Energy and

Conservation of Energy in gravitational and Electric Field – Examples –Non-Conservative Forces –General Law of Conservation of Energy.

Unit - IV	Rigid Body Dynamics	09 Hours
Translational and R	Rotational Motion – Angular Momentum – Moment of Inertia – Ge	eneral
Theorems of Mome	ent of Inertia – Examples – Rotation About Fixed Axis – Kinetic E	Energy of

Rotation – Examples – Body Rolling along a Plane Surface – Body Rolling Down an Inclined

Plane – Gyroscopic Precision – Gyrostatic Applications.

Unit - V	Lagrangian Mechanics	09 Hours	
----------	----------------------	-----------------	--

Generalized Coordinates - Degrees of Freedom - Constraints - Principle of Virtual Work and

D' Alembert's Principle – Lagrange's Equation from D' Alembert's Principle – Application

-Simple Pendulum - Atwood's Machine.

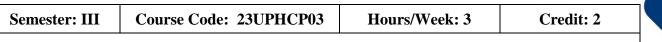
Text Book(s):

- 1. J.C. Upadhyaya, 2019, Classical Mechanics, HimalayaPublishing house, Mumbai.
- P. Durai Pandian, Laxmi Durai Pandian, Muthamizh Jayapragasam, 2005, Mechanics, 6th revised edition,S. Chand & Co.
- 3. D. S. Mathur & P. S. Hemne, 2000, Mechanics, RevisedEdition, S.Chand & Co.
- 4. Narayanamurthi, M. & Nagarathnam. N, 1998, Dynamics. The National Publishing, Chennai.
- Narayanamurthi, M. and Nagarathnam, N, 1982, Statics, Hydrostatics and Hydrodynamics, The National Publishers, Chennai.

Reference Books:

- 1. Goldstein Herbert, 1980, Classical Mechanics. U.S.A: Addisonand Wesely.
- 2. Halliday, David & Robert, Resnick, 1995, Physics Vol.I. NewAge, International, Chennai.
- 3. Halliday, David Robert Resnick and Walker Jearl, 2001, Fundamentals of Physics, John Wiley, New Delhi

Web Resources:


- 1. https://youtu.be/X4_K-XLUIB4
- 2. https://nptel.ac.in/courses/115103115
- 3. https://www.youtube.com/watch?v=p075LPq3Eas
- 4. https://onlinecourses.nptel.ac.in/noc22_me96/preview

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

	Learning Outcomes: Upon successful completion of this course, the student will be able to			
COs	Statements	Bloom's Level		
CO1	Understand the Newton's Law of motion, understand general theory of relativity, Keeper's laws and Realize the basic principles behind planetary motion	K1		
CO2	Acquire the knowledge on the conservation laws	K2		
CO3	Apply conservation law and calculate energy of various systems, understand and differentiate conservative and non-conservative forces	K3		
CO4	Gain knowledge on rigid body dynamics and solve problems based on this concept	K4		
CO5	Appreciate Lagrangian system of mechanics, applyD" Alemberts principle	K5		
K1	– Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 –	Create		

Mapping (COs vs POs)									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	S	S	S	М	S	S	S	М	S
CO2	S	S	S	М	S	М	S	S	S
CO3	S	S	S	S	S	S	М	S	М
CO4	М	S	S	S	М	S	S	М	S
CO5	S	S	М	S	S	М	S	S	S

COURSE TITLE: CORE COURSE PRACTICAL III - ELECTRICITY EXPERIMENTS

Course Overview:

1. To understand practically various physics applications

Learning Objectives:

- Construct circuits to learn about the concept of electricity, current, resistance in the path of current, different parameters that affect a circuit. Set up experiments, observe, analyze and assimilate the concept
- 1. Calibration of low range and high range voltmeter using potentiometer
- 2. Calibration of ammeter using potentiometer.
- 3. Measurement of low resistances using potentiometer.
- 4. Determination of field along the axis of a current carrying circular coil.
- 5. Determination of earth"s magnetic field using field along axis of currentcarrying coil.
- 6. Determination of specific resistance of the material of the wire using PO box.
- 7. Determination of resistance and specific resistance using Carey Foster's bridge.
- 8. Determination of internal resistance of a cell using potentiometer.
- 9. Determination of specific conductance of an electrolyte.
- 10. Determination of e.m.f of thermo couple using potentiometer
- 11. Determination of capacitance using Desauty's bridge and B.G./Spot galvanometer / head phone.
- 12. Determination of figure of merit of BG or spot galvanometer.
- 13. Comparison of EMF of two cells using BG. Comparison of capacitance using BG.

Reference books:

1. M.N. Srinivasan, S. Balasubramanian, R. Ranganathan, A textbook of PRACTICAL PHYSICS, Sultan Chand and sons educational publishers, New Delhi. Edition 2017

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

Learning Outcomes: Upon successful completion of this course, the student will be able to						
COs Statements						
CO1	Understand the Newton's Law of motion, understand generaltheory of relativity, Kepler's laws and Realize the basic principles behind planetary motion	K1				
CO2	Acquire the knowledge on the conservation laws	K2				
CO3	Apply conservation law and calculate energy of various systems, understand and differentiate conservative and non-conservative forces	K3				
CO4	Gain knowledge on rigid body dynamics and solve problemsbased on this concept	K4				
CO5	Appreciate Lagrangian system of mechanics, applyD" Alemberts principle	K5				
K1	– Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 –	Create				

	Mapping (COs vs POs)								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	S	S	S	М	S	S	S	М	S
CO2	S	S	S	М	S	М	S	S	S
CO3	S	S	S	S	S	S	М	S	М
CO4	М	S	S	S	М	S	S	М	S
CO5	S	S	М	S	S	М	S	S	S

Semester: III	Course Code: 23UPHSE02	Hours/Week: 2	Credit: 2				
COURSE TITLE: SKILL ENHANCEMENT COURSE II - (Entrepreneurial Based)							
DIGITAL PHOTOGRAPHY							

Course Overview:

- 1. Demonstrate general physics phenomena.
- 2. Apply basic physics law in daily life.
- 3. Understand the mechanisms of electrical devices.
- 4. Understand the physics laws.

Learning Objectives:

- 1. To understand the principles of photography and image formation and the science and arts behind it.
- 2. To apply the principles in the visual system.
- 3. To understand the concepts in everydaylife.
- To understand the essential components of conventional and digital Cameras and also the different image processing techniques.

Unit - I Ph	notography and Basic Principle of ImageFormation	04 Hours
-------------	--	----------

Principle – Chemical Route and Digital Route – Light, Wavelengths, Colours – Shadows – Light Intensity and Distance – Making Light form Images –Pin – Hole Images – Practical Limitations to Pin-Hole Images – Lens Instead of Pin – Hole – Focal Length And Image Size –

Imaging of Closer Subjects.

Unit - II Lenses – Controlling The Images	04 Hours
---	----------

Photographic Lens - Focal Length and Angle of View (Problems) - Focusing Movement -

Aperture and F - Numbers (Problems) - Depthof Field- Depth of Focus - Image Stabilization

- Lenses for Digital Cameras - Lens and Camera Care.

Unit - III	Camera Using Films and its Types	04 Hours					
Camera and its Essential Components – Shutter – Aperture – Light Measurement – Film							

Housing - Camera types: View Camera - View Finder Camera - Reflex Camera -

Single Lens Reflex (SLR) Camera

		(Autonomous)		
Unit - IV	Digital Cameras Principle and Types	04 Hours		

Principle of Digital Image Capturing – Comparison of Digital And Analog Picture Information – Megapixel – Grain, Noise and Pixel Density – Optical and Digital Zooming – Image Stabilizer – Bit Depth White Balance – Colour Modes – File Formats (TIFF, RAW &JPEG) Storage Cards and Types – Digital Cameras: Camera Phones – Compact Camera – Hybrid Camera – Digital SLR

Unit - V	Unit - V The Digital Image – Postproduction					
Hardware: Computer and its Peripherals – Software: Saving Digital File – Basic Editing:						
Navigating the Image – Undo/Redo/History – Crop – Rotate – Brightness & Contrast – Colour						
Balance – Hue/Sat	uration – Dodge/Burn – Cloning &Retouching – Removing Anl	Element In An				
Image – Advanced Editing: Histogram/Levels – Curves – Selection Tools: Magic Wand –						
Printing Digital Images: Inkjet. Printer – Laser Printer – Dye Sub Printer – Lambda/Light						
Jet Printers.						

Text Book(s):

- Michel J. Lang ford , Anna Fox & Richard Sawd on Smith, Basicphotography, 9th Edition, 2010-NL, Focal press, London
- Henry Carroll, Read this if you want to take great photographsof people, Laurence King Publishing

Reference Books:

- 1. Mark Galer, Digital Photography in Available Lightessentials kills, 2006, Focal press, London
- 2. Paul Harcourt Davies, The Photo grapher's practical handbook, 2005, UKPRESS

Web Resources:

1. http://nptel.ac.in/courses/112104026/

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

Learning Outcomes:						
Upon successful completion of this course, the student will be able to						
COs	Statements					
CO1	Understand the Newton's Law of motion, understand general theory of relativity, Kepler's laws and Realize the basic principles behind planetary motion	K1				
CO2	Acquire the knowledge on the conservation laws	K2				
CO3	Apply conservation law and calculate energy of various systems, understand and differentiate conservative and non-conservative forces	K3				
CO4	Gain knowledge on rigid body dynamics and solve problems based on this concept	K4				
CO5	Appreciate Lagrangian system of mechanics, applyD' Alemberts principle	K5				
K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 – Create						

Mapping (COs vs POs)									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	S	S	S	М	S	S	S	М	S
CO2	S	S	S	М	S	М	S	S	S
CO3	S	S	S	S	S	S	М	S	М
CO4	М	S	S	S	М	S	S	М	S
CO5	S	S	М	S	S	Μ	S	S	S

Semester: III	Course Code: 23UPHSE03	Hours/Week: 2	Credit: 2				
COURSE TITLE: SKILL ENHANCEMENT COURSE III - COMPUTATIONAL							
METHODS AND PROGRAMMING IN C							

Course Overview:

- 1. Demonstrate general physics phenomena.
- 2. Apply basic C programme in daily life.
- 3. Understand the mechanisms of electronics devices.
- 4. Understand the concepts of C programme.

Learning Objectives:

- 1. This course will provide the necessary basic concepts of errors in computing and a few numerical methods for finding zeros of non- linear functions.
- 2. To provide the basics of the C programminglanguage..
- 3. To understand the C programme in everydaylife.
- 4. To visualize fundamentals of C programme.
- 5. To apply array to solve complex problems.

Unit - I	Errors in Computing		
Significant digits – Inherent Errors – Numerical Errors – Modelling Errors – Absolute and			
Relative Errors – Error Propagation – Conditioning and stability – Convergence of iterative			
process.			

Unit - II	Roots of Equations	04 Hours

Algebraic, Polynomial, Transcendental equations – Methods of the solution – Iterative methods

- Starting and stopping iterative process - Evaluation of polynomials - Bisection method -

False Position method-Related problems.

Unit - III	C-Fundamentals	04 Hours
Character set – Keywords - data types – variable types - constants – identifiers – keywords –		
operators and expressions – Input and Output functions.		

Unit - IV	Control Statements	04 Hours
-----------	--------------------	----------

(Syntax and examples for each) If – else, Nested if-else, Switch – Case,Break, While Loop, for loop, Do-While statement, go to.

Unit - V Functions and Arrays 04 Hours		
--	--	--

Declaration and definition of a function – accessing a function – passing parameters to a function Defining an array – processing an array – singledimensional array – multidimensional array – simple programs (Addition, Subtraction, Multiplication of two matrices - Ascending and Descending order).

Text Book(s):

- 1. E. Balagurusamy, Numerical Methods, Mc Graw Hill Publishers, 2017.
- 2. S.S. Sastry, Introductory Methods of Numerical Analysis, Prentice Hall of Indi a,2012

Reference Books:

- 1. E.Balagurusamy, Programmingin ANSIC, Mc Graw Hill Publishers, 2019, 8thEdn
- 2. B.Gottfried, Schaum's Outline of Programming with C, Mc Graw Hill Publishers, 1996

Web Resources:

- 1. https://beginnersbook.com/2014/01/c-tutorial-for- beginners-with- examples/
- 2. https://onlinecourses.swayam2.ac.in/cec20_cs02/preview

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

	Learning Outcomes: Upon successful completion of this course, the student will be able to				
COs	Statements	Bloom's Level			
CO1	Develop a C program.	K1			
CO2	Control the sequence of the program and give logical outputs.	K2			
CO3	Implement strings in your C program.	K3			
CO4	Store different data types in the same memory.	K4			
CO5	CO5Manage I/O operations in your C program.K5				
K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 – Create					

Mapping (COs vs POs)									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	М	S	S	М	S	S	S	М	S
CO2	S	S	S	М	S	М	S	S	S
CO3	S	S	S	S	S	S	М	S	М
CO4	М	S	S	S	М	S	S	М	S
CO5	S	S	М	S	S	М	S	S	S

S - Strong, M – Medium, L – Low

Semester: III	Course Code: 23UPHA01	Hours/Week: 5	Credit: 4
COURSE TITLE: ALLIED PHYSICS – I (For B.Sc., Mathematics/ Geology/Chemistry)			

Course Overview:

- 1. Demonstrate general physics phenomena
- 2. Apply basic physics law in daily life
- 3. Understand the heat and thermodynamics
- 4. Understand the waves oscillations and ultrasonic's

Learning Objectives:

- 1. To impart basic principles of Physics that which would be helpful for students who have taken programmes other than Physics.
- 2. To understand the waves, oscillations and ultrasonic's
- 3. To understand the properties of matter
- 4. To understand the electricity
- 5. To understand the digital electronics and digital India

Unit - I	Waves, Oscillations and Ultrasonics	07 Hours	
----------	-------------------------------------	----------	--

Simple Harmonic Motion (SHM) – Composition of two SHMs at Right Angles (Periods in the Ratio 1:1) – Lissajous Figures – Uses- Laws of Transverse Vibrations of Strings– Determination of AC Frequency using Sonometer (Steel and Brass Wires) – Ultrasound Production – Piezoelectric Method – Application of Ultrasonics: Medical Field – Lithotripsy, Ultrasonography – Ultrasonoimaging- Ultrasonics in Dentistry – Physiotheraphy, Opthalmology – Advantages of Noninvasive Surgery – Ultrasonics in GreenChemistry.

Unit - II Properties of Matter		07 Hours	
Elasticity: Elastic Constants - Bending of Beam - Theory of Non - Uniform Bending -			
Determination of	Young's Modulus by Non- Uniform Bending – Energy Stored	l in A Stretched	
Wire – Torsion of a	Wire – Torsion of a wire – Determination of Rigidity Modulus by Torsional Pendulum.		
Viscosity: Streaml	ine and Turbulent Motion – Critical Velocity – Coefficient	of Viscosity -	
Poiseuille's Formu	la – Comparison of Viscosities – Burette Method.		

Surface Tension: Definition – Molecular Theory – Droplets Formation – Shape, Size and Lifetime - Covid Transmission Through Droplets, Saliva – Drop Weight Method – Interfacial Surface Tension.

Unit - III	Unit - III Heat and Thermodynamics			
Joule - Kelvin effect – Joule-Thomson porous plug experiment – theory – temperature of for				
inversion – liquefaction of Oxygen – Linde's process of liquefaction of air – liquid Oxygen				
medicalpurpose – i	medicalpurpose - importance of cry coolers - thermodynamic system - thermodynamic			
equilibrium – laws of thermodynamics – heatengine – Carnot's cycle – efficiency – entropy				
- change of entropyin reversible and irreversible process.				

Unit - IV	nit - IV Electricity and Magnetism			
Potentiometer – Principle – Measurement of Thermo EMF UsingPotentiometer – Magnetic				
Field Due to a Curr	Field Due to a Current Carrying Conductor - Biot-Savart's Law - Field Along the Axis of the			
Coil Carrying Curr	Coil Carrying Current - Peak, Average and RMS Values of AC Current and Voltage - Power			
Factor and Current Values in AnAc Circuit – Types Of Switches In. Household And Factories–				
Smart Wifi Switches - Fuses And Circuit Breakers In Houses				

Unit - V	Digital Electronics and Digital India	07 Hours

Logic Gates, OR, AND, NOT, NAND, NOR , EXOR Logic Gates - Universal Building Blocks -

Boolean Algebra – De Morgan's Theorem – Verification – Overview Of Government Initiatives: Software Technological Parks Under Meity, NIELIT- Semiconductor Laboratories Under Dept. Of Space An Introduction To Digital India.

Text Book(s):

- 1. R. Murugesan (2001), Allied Physics, S. Chand & Co, New Delhi.
- 2. Brijlal and N. Subramanyam (1994), Waves and Oscillations, Vikas PublishingHouse, New Delhi.
- 3. Brijlal and N. Subramaniam (1994), Properties of Matter, S. Chand & Co., New Delhi
- 4. J.B. Rajam and C.L.Arora (1976). Heat and Thermodynamics (8th edition), S. Chand & Co., New Delhi.
- 5. A. Subramaniyam, AppliedElectronics2ndEdn.,NationalPublishingCo.,Chennai.

Reference Books:

- Resnick Halliday and Walker (2018). Fundamentals of Physics (11thedition), John Willey and Sons, Asia Pvt. Ltd., Singapore.
- V.R. Khannaand R.S. Bedi (1998), TextbookofSound1stEdn. Kedharnaath Publish & Co, Meerut.
- N.S. Khare and S.S. Srivastava (1983), Electricity and Magnetism 10thEdn., AtmaRam&Sons, New Delhi.
- 4. D.R. Khanna and H.R. Gulati (1979). Optics, S. Chand & Co. Ltd., New Delhi.

Web Resources:

- 1. <u>https://youtu.be/M_5KYncYNyc</u>
- 2. <u>https://youtu.be/ljJLJgIvaHY</u>

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

Learning Outcomes:					
Upon successful completion of this course, the student will be able to					
COs	Statements				
CO1	Explain types of motion and extend their knowledge in the study of various dynamic motions analyze and demonstrate mathematically. Relate theory with practical applications inmedical field.	K1			
CO2	Explain their knowledge of understanding about materials and their behaviors and apply it to various situations in laboratory and real life. Connect droplet theory with Corona transmission.	К2			
CO3	Comprehend basic concept of thermodynamics concept of entropy and associated theorems able to interpret the process of flow temperature physics in the background of growth of this technology.	К3			
CO4	Articulate the knowledge about electric current resistance, capacitance in terms of potential electric field and electric correlate the connection between electric field and magnetic field and analyze them mathematically verify circuits and apply the concepts to construct circuits and study them.	K4			
CO5	Interpret the real life solutions using AND, OR, NOT basic logic gates and in tend their ideas to universal building blocks.Infer operations using Boolean algebra and acquire elementary idea of IC circuits. Acquire information about various Govt. programs/ institutions in this field.	K5			
K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 – Create					

	Mapping (COs vs POs)								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S
CO3	М	S	S	S	S	М	S	S	S
CO4	S	S	S	S	S	S	S	М	S
CO5	М	S	S	S	S	S	S	S	S

Semester: III	Course Code: 23UPHAP01	Hours/Week: 3	Credit: 3		
COUDSE TITLE, ALLIED DIVSICS DDA CTICALS - L (Ear D. S. Mothematica)					

COURSE TITLE: ALLIED PHYSICS PRACTICALS – I (For B. Sc Mathematics/ Geology/Chemistry)

Course Overview:

1. To understand practically various physics applications

Learning Objectives:

- Apply various physics concepts to understand Properties of Matterand waves, set up experimentation to verify theories, quantify and analyze, able to do error analysis and correlate results
- 1. Young's modulus by non-uniform bending using pin and microscope
- 2. Young's modulus by non-uniform bending using optic lever, scale and telescope
- 3. Rigidity modulus by static torsion method
- 4. Rigidity modulus by torsional oscillations without mass
- 5. Surface tension and interfacial Surface tension drop weight method
- 6. Comparison of viscosities of two liquids burette method
- 7. Specific heat capacity of a liquid half time correction
- 8. Verification of laws of transverse vibrations using sonometer
- 9. Calibration of low range voltmeter using potentiometer
- 10. Determination of thermo emf using potentiometer
- 11. Verification of truth tables of basic logic gates using ICs
- 12. Verification of De Morgan's theorems using logic gate ICs.
- 13. Use of NAND as universal building block.

Reference books:

M.N.Srinivasan, S. Balasubramanian, R. Ranganathan, A textbook of PRACTICAL PHYSICS, Sultan Chand and sons educational publishers, New Delhi. Edition 2017

Teaching Methodology: Videos, Audios, PPT, Role Play, Field Visit, Seminar, Chalk & Talk, Lecturing, Case Study, Demonstration, Problem Solving, Group Discussion, Flipped Learning

Learning Outcomes: Upon successful completion of this course, the student will be able to						
COs	Statements	Bloom's Level				
CO1	Understand the Fundamentals of Physics	K1				
CO2	Understand the Force	K2				
CO3	Demonstrate general physics in energy	K3				
CO4	Apply basic physics in motion	K4				
CO5	To understand the concept of properties of matter	K5				
K1 – Remember, K2 – Understand, K3 – Apply, K4 – Analyze, K5 – Evaluate, K6 – Create						

	Mapping (COs vs POs)								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	S	S	S	L	М	S	L	L	L
CO2	S	S	S	L	М	S	L	L	L
CO3	S	S	S	L	М	М	М	L	L
CO4	S	S	S	L	М	М	М	L	L
CO5	S	S	М	L	М	М	М	L	L